If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+263t+10=0
a = -16; b = 263; c = +10;
Δ = b2-4ac
Δ = 2632-4·(-16)·10
Δ = 69809
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(263)-\sqrt{69809}}{2*-16}=\frac{-263-\sqrt{69809}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(263)+\sqrt{69809}}{2*-16}=\frac{-263+\sqrt{69809}}{-32} $
| 29x=2140 | | 19=17+r/3 | | 6x=6(4-x) | | 8x+4-2x=5x+4 | | 16x=420 | | Y=2x+0.50 | | 7=q/4+4 | | 7z-18=9+10 | | 2x+4-2x=5x+4 | | 34x=2140 | | 5x+4-2x=5x+4 | | 4x+4-2x=5x+4 | | 7=q4+4 | | u/3+8=2 | | 3(v-6)+2=3(v+2) | | 89=17+8z | | 5x2+3x+5=0 | | 7x-15=3x-1 | | 5+8c=13 | | 27/4=3k^2/4 | | 2x+7÷2=4+x÷5 | | 7(-2x+4)+10x=4(x-1) | | Y=203-4x | | 5w-10=-2w+39 | | w×23/4=161/2 | | q=q^-4 | | 72=9(w) | | 7+x/4=43 | | q0,q=q^-4 | | 1/3(-6x+9)=-3 | | 10=263t+-16t^2 | | 25^(2x+3)=(1/125)^(1-x) |